skip to main content


Search for: All records

Creators/Authors contains: "Deliyannis, Constantine P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The light element lithium is formed by nucleosynthesis during the Big Bang. Its abundance can help to define the parameters of the early Universe. To find this primordial value, it is necessary to determine Li abundances in the oldest stars because it is readily destroyed by nuclear reactions in stellar interiors. We have made high-resolution (∼45,000) spectroscopic observations of five identical unevolved turnoff stars in the 13 Gyr old globular cluster M5. In our analysis we find a range in Li abundance of a factor of 2; the spread is 5 times the individual error. The comparison of these results with those for turnoff stars from five other globular clusters reveals a similarly large range in Li. Lithium in M5 and the other clusters all have stars above the field star Li plateau, but none are as high as the predictions for primordial Li. The maximum values for Li are the same in all six clusters. Multiple generations of stars are found in many globular clusters; those later generations are expected to have formed from Li-depleted gas. Such second- and later-generation stars would have no Li. However, only one of the six clusters has a few unevolved stars with upper limits on the Li abundance.

     
    more » « less
  2. Abstract

    We consider WIYN/Hydra spectra of 329 photometric candidate members of the 420 Myr old open cluster M48 and report lithium detections or upper limits for 234 members and likely members. The 171 single members define a number of notable Li-mass trends, some delineated even more clearly than in Hyades/Praesepe: the giants are consistent with subgiant Li dilution and prior MS Li depletion due to rotational mixing. A dwarfs (8600–7700 K) have upper limits higher than the presumed initial cluster Li abundance. Two of five late A dwarfs (7700–7200 K) are Li-rich, possibly due to diffusion, planetesimal accretion, and/or engulfment of hydrogen-poor planets. Early F dwarfs already show evidence of Li depletion seen in older clusters. The Li–Tefftrends of the Li Dip (6675–6200 K), Li Plateau (6200–6000 K), and G and K dwarfs (6000–4000 K) are very clearly delineated and are intermediate to those of the 120 Myr old Pleiades and 650 Myr old Hyades/Praesepe, which suggests a sequence of Li depletion with age. The cool side of the Li Dip is especially well defined with little scatter. The Li–Tefftrend is very tight in the Li Plateau and early G dwarfs, but scatter increases gradually for cooler dwarfs. These patterns support and constrain models of the universally dominant Li depletion mechanism for FGK dwarfs, namely rotational mixing due to angular momentum loss; we discuss how diffusion and gravity-wave-driven mixing may also play roles. For late G/K dwarfs, faster rotators show higher Li than slower rotators, and we discuss possible connections between angular momentum loss and Li depletion.

     
    more » « less
  3. Abstract

    Precision CCDuvbyCaHβphotometry is presented of the old cluster, M67, covering one square degree with typical internal precision at the 0.005–0.020 mag level toV∼ 17. The photometry is calibrated using standards over a wide range in luminosity and temperature from NGC 752 and zeroed to the standard system via published photoelectric observations. Relative to NGC 752, differential offsets in reddening and metallicity are derived using astrometric members, supplemented by radial velocity information. From single-star members, offsets in the sense (M67−NGC 752) areδE(by) = −0.005 ± 0.001 (sem) mag from 327 F/G dwarfs andδ[Fe/H] = 0.062 ± 0.006 (sem) dex from the combinedm1andhkindices of 249 F dwarfs, leading toE(by) = 0.021 ± 0.004 (sem) and [Fe/H]M67= +0.030 ± 0.016 (sem) assuming [Fe/H]Hyades= +0.12. With probable binaries eliminated usingc1, (by) indices, 83 members with (π/σπ) > 50 generate (mM)0= 8.220 ± 0.005 (sem) for NGC 752 and an isochronal age of 1.45 ± 0.05 Gyr. Using the same parallax restriction for 312 stars, M67 has (mM) = 9.77 ± 0.02 (sem), leading to an age tied solely to the luminosity of the subgiant branch of 3.70 ± 0.03 Gyr. The turnoff color spread implies ±0.1 Gyr, but the turnoff morphology defines a younger age/higher mass for the stars, consistent with recent binary analysis and broadband photometry indicating possible missing physics in the isochrones. Anomalous stars positioned blueward of the turnoff are discussed.

     
    more » « less
  4. Abstract The surface content of lithium (Li) and beryllium (Be) in stars can reveal important information about the temperature structure and physical processes in their interior regions. This study focuses on solar-type stars with a sample that is more precisely defined than done previously. Our selection of stars studied for Be is constrained by five parameters: mass, temperature, surface gravity, metallicity, and age to be similar to the Sun and is focused on stars within ±0.02 of 1 M ⊙ . We have used the Keck I telescope with HIRES to obtain spectra of the Be ii spectral region of 52 such stars at a high spectral resolution (∼45,000) and high signal-to-noise ratios. While the spread in Li in these stars is greater than a factor of 400, the spread in Be is only 2.7 times. Two stars were without any Be, perhaps due to a merger or a mass transfer with a companion. We find a steep trend of Li with temperature but little for Be. While there is a downward trend in Li with [Fe/H] from −0.4 to +0.4 due to stellar depletion, there is a small increase in Be with Fe from Galactic Be enrichment. While there is a broad decline in Li with age, there may be a small increase in Be with age, though age is less well determined. In the subset of stars closest to the Sun in temperature and other parameters, we find that the ratio of the abundances of Be to Li is much lower than predicted by models; there may be other mixing mechanisms causing additional Li depletion. 
    more » « less
  5. Abstract The surface abundances of the light elements lithium (Li) and beryllium (Be) reveal information about the physical processes taking place in stellar interiors. The investigation of the amount of these two elements in stars in open clusters shows the effect of age on those mechanisms. We have obtained spectra of both Li and Be in main-sequence stars in NGC 752 at high spectral resolution and high signal-to-noise ratios with HIRES on the Keck I telescope. In order to make meaningful comparisons with other clusters, we have determined the stellar parameters on a common scale. We have found abundances of Li and Be by spectral synthesis techniques. NGC 752 is twice the age of the well-studied Hyades. We find that (1) the Li dip centered near 6500 K is wider in NGC 752, having expanded toward cooler temperatures; (2) the Be dip is deeper in the older NGC 752; (3) the Li “peak” near 6200 K is lower by about 0.3 dex; (4) although there is little Be depletion in the cooler stars, it is possible that Be may be lower in NGC 752 than in the Hyades; and (5) the Li content in both clusters declines with decreasing temperature, but there is less Li in NGC 752 at a given temperature by ∼0.4 dex. These differences are consistent with the transport of the light-element nuclei below the surface convection zone as predicted by theory. That connection to rotational spin-down is indicated by the pattern of rotation with temperature in the two clusters. 
    more » « less
  6. ABSTRACT

    We present WIYN1/Hydra spectra of 34 red giant candidate members of NGC 188, which, together with WOCS2 and Gaia data yield 23 single members, 6 binary members, 4 single non-members, and 1 binary non-member. We report [Fe/H] for 29 members and derive [Fe/H]NGC188  = +0.064 ± 0.018 dex (σμ) (sky spectra yield A(Fe)⊙  = 7.520 ± 0.015 dex (σμ)). We discuss effects on the derived parameters of varying Yale-Yonsei isochrones to fit the turnoff. We take advantage of the coolest, lowest gravity giants to refine the line list near Li 6707.8 Å. Using synthesis we derive detections of A(Li)3  = 1.17, 1.65, 2.04, and 0.60 dex for stars 4346, 4705, 5027, and 6353, respectively, and 3σ upper limits for the other members. Whereas only two of the detections meet the traditional criterion for ‘Li-richness’ of A(Li) > 1.5 dex, we argue that since the cluster A(Li) vanish as subgiants evolve to the base of the RGB, all four stars are Li-rich in this cluster’s context. An incidence of even a few Li-rich stars in a sample of 29 stars is far higher than what recent large surveys have found in the field. All four stars lie either slightly or substantially away from the cluster fiducial sequence, possibly providing clues about their Li-richness. We discuss a number of possibilities for the origin for the Li in each star, and suggest potentially discriminating future observations.

     
    more » « less
  7. Abstract

    We present analyses of improved photometric and spectroscopic observations for two detached eclipsing binaries at the turnoff of the open cluster NGC 752: the 1.01 days binary DS And and the 15.53 days BD +37 410. For DS And, we findM1= 1.692 ± 0.004 ± 0.010M,R1= 2.185 ± 0.004 ± 0.008R,M2= 1.184 ± 0.001 ± 0.003M, andR2= 1.200 ± 0.003 ± 0.005R. We either confirm or newly identify unusual characteristics of both stars in the binary: the primary star is found to be slightly hotter than the main-sequence turnoff and there is a more substantial discrepancy in its luminosity compared to models (model luminosities are too large by about 40%), while the secondary star is oversized and cooler compared to other main-sequence stars in the same cluster. The evidence points to nonstandard evolution for both stars, but most plausible paths cannot explain the low luminosity of the primary star. BD +37 410 only has one eclipse per cycle, but extensive spectroscopic observations and the Transiting Exoplanet Survey Satellite light curve constrain the stellar masses well:M1= 1.717 ± 0.011MandM2= 1.175 ± 0.005M. The radius of the main-sequence primary star near 2.9Rdefinitively requires large convective core overshooting (>0.2 pressure scale heights) in models for its mass, and multiple lines of evidence point toward an age of 1.61 ± 0.03 ± 0.05 Gyr (statistical and systematic uncertainties). Because NGC 752 is currently undergoing the transition from nondegenerate to degenerate He ignition of its red clump stars, BD +37 410 A directly constrains the star mass where this transition occurs.

     
    more » « less
  8. null (Ed.)